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Motivation

Flash floods are often triggered by frontal squall lines in
spring and mesoscale convective systems in summer. They
occur often over the CONUS, rank first among the weather-
related causes of property damage. In 2013, they accounted
for 8 of the 9 weather related billion dollar losses.

NOAA forecasters are responsible for making the public
aware of these phenomena in advance, and this requires
accurate simulations of the thunderstorms responsible for
these threats.

To improve forecasts and translate research quickly to
operational meteorology, HWNT was developed. Utilizing the
latest in forecasting techniques, NSSL and NCEP have run
deterministic convection-permitting WRF simulations to aid in
forecasting hazardous weather.

Preliminary research by the UND group and others suggests
that the simulated convective properties are dramatically
affected by the microphysics scheme. However, it is not
understood which microphysics schemes may perform best
over long periods of time and how performance may vary by
synoptic regime.



Proposed ODbjectives

To better guide present operational
forecasts of hazardous weather using
convection-permitting models and future
ensemble practices, we propose to
perform detailed evaluations of both
deterministic and ensemble suites of
convection-permitting simulations in the
following two objectives.

Evaluation of WRF simulated
convective systems and precipitation

Develop and determine best
practices for a microphysics based WRF
ensemble



Objective 1:
Evaluation of WRF simulated convective

systems and precipitation

The primary goal is to understand how well
convective systems and associated precipitation are
simulated and how this performance varies with the
large-scale atmospheric state (synoptic regime)
through the application of Self Organizing Maps
(SOMs, Kennedy 2011).

The second goal is to study the formation-dissipation
processes of convective complexes, such as
initiation regions, duration, and intensity; and
investigate the estimated precipitation over the
classified convective and stratiform regions of DCS
(Feng et al. 2011) through an integrative analysis of
WRF simulations and NEXRAD/GOES observations.




Data sets

The NEXRAD radar observations from the NSSL National
Mosaic and MultiSensor QPE Q2 (NMQ) project will be the
primary dataset for evaluating the WRF simulations.

Feng et al. (2011) developed a merged/hybrid dataset of
NEXRAD and GOES satellite data to produce a 3-D product of
convective structure and to classify a deep convective system
(DCS) into three components: Convective Core (CC), Stratiform
Region (SR) and Anvil Region (AC). Feng et al. (2011) further
used these results to study the coverages and associated
precipitation over these three regions.

The daily simulations have already been collected and
processed by Aaron Kennedy for a previously-funded NSF post-
doctoral fellowship. These simulations were generated using
the Advanced Research WRF core (WRF-ARW) at NSSL, and
WRF-NMM at NCEP.
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Radar Classification Example
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Define Life Cycle
Stages
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Precipitation Evolution
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Challenge and difficulty for
modeling DCS clouds

— =

Quite often, models can simulate
frontal systems, but not for loca




NEXRAD Reflectivity and Classification 2007. 05. 24 12:00 UTC
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HWT Simulations from NSSL and NCEP

WRF Core Horizontal Microphysics Radiation Initial Region Time DEVE
Run dx Conditions Period

NCEP Ferrier MYJ GFDL/GFDL CONUS 2010-2013 1126

NSSL ARW 4 km WSM6 MYJ Dudhia/RRTM NAM CONUS 2010-2013* 1422

« Utilize long-term database of HWT Simulations
* For synoptic typing and modeling reasons- focus on several regions
« Utilize prior work making use of climate model sized grids
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R e

W750FL Del Genio et al. (2012)

DT LN AR o~ B " R Deep+Shallow
Convection

WD450 Wu et al. (2009)

W 2 Value
Depth 2 450 hPa Deep Convection

Simulated Reflectivity W750FL WD450

NCEP 4KM WRF 00 UTC - 20100519-F30
94w 9W

96w 95°W

D NCEP 4KM WRF 00 UTC - 20100519F30 G NCEP 4KM WRF 00 UTC - 20100519F30
97w %W 95°W 94w 96" 95w 94w

93W

97w

93'W 9TW

>

B
P i 4

5 3

5 50 55 60 65

N 6 Wos 160 G20 26 80 80, A0 A 05 15 2 25 3 35 4 0. 1.5 2 25
1km AGL Simulated Reflectivity (dBZ) W750FL Vertical Velocity Threshold (m/s) WD450 Veriical Velocity Threshold (m/s)
750FL captures deep+shallow, while 450 only deep.



« Spatial Analysis of simulated convective
frequency and areal coverage

— NSSL WRF has more frequent convection than
NCEP WRF

— NCEP WRF has more deep convection than the
NSSL WRF
* Analysis of simulated convection over the
SGP region (2.5°x2° lon/lat grid box)
— Precipitation Analysis
— Diurnal Cycle
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Convective Frequency (2010-2013)
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Convective Area (2010-2013)
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Convective Area over SGP
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Spatial Distribution of Precipitation

One Hour Convective Precipitation Rate Frequency

Warm season precipitation frequency (2010-13)
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Diurnal Variation of Precipitation

Convective Precipitation Frequency over the ARM-SGP site

2010-2012 "Conwvective Frequency"
SGP Domain: 35.64 to 37.64° N and 96.25 to 98.75 "~ W

—_— NSSL-WRF 10 mm/hr Threshold
- — NSSL-WRF 45 dBZ Threshold
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- Two peaks in convective frequency: Morning (~12Z) and evening (~24Z) from
Stage-IV/NSSL/NCEP

- Delay in NCEP-WRF evening convective frequency peak.

» Is this common for entire U.S. Great Plains?
- Due to propagating convective systems or “pop up” diurnal convection?



Hovmoller of Convective Precipitation Frequency over ARM-SGP

June-August 2010-2012 Convective Frequency (Threshold: 10 mm/hr) Hovmoller for latitudes
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Hovmodller of Convective Precipitation Frequency over U.S. Great Plains

June-August 2010-2012 Convective Frequency (Threshold: 10 mm/hr) Hovmoller for latitude
Latitude: 32°N-42°N o o
NSSL-WRF band of 32°N - 42°N
encompassing the
ARM-SGP site area.

Stage-IV (Observations)

Stage-1V

2|
0 100°W 95°W 100°W 95°W E
LUt NCEPE—WRF — Time of Peak Con!fective Frequency 20 g e NCEP-WRF
NCEP — s {  propagating
5 convection appears
toure - Propagating convection | to be slower than
: NSSL-WRF and
Diurnal convection g’ Stage-IV.
i .- St e - More agreement in
Tk mints B ; models and
ssurclll. . ||_L| observation with
%— ’ timing of peak in
diurnal convection

nuch o 0w %W frequency.



‘ DJF 1999- 2008 SOM - 900 hPa AnalySIS

900 hPa Relative Humidity (%)
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Synoptic patterns classified by MSLP, RH, U, V, and Geopotential
Height




Winter Precipitation and Vertical Motion

Average Precipitation - DJF 1999-2008

Average Precipitation(mm hr')
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Over 60% of seasonal precipitation associated with classes #7-9.
We will produce SOMs based off convective cases identified by NSSL,

NCEP and observations, which should be used to judge independent
properties of models: microphysics schemes.




Objective 2:
Develop and determine best practices for
a microphysics based WRF ensemble

We will develop a microphysics ensemble forecasting system
for WRF using WSMG6, Ferrier and 7 other microphysical
schemes. These simulations will be tested for their ability to
simulate convective systems and precipitation based on the
dataset generated in Objective 1.

After this initial assessment, a best-practice ensemble suite
will be developed and compared to the current NSSL ensemble
to understand best practices for the next generation of
convection permitting ensembles.

The efforts of this proposed work will lead to better
understanding of the strengths and weaknesses of convection-
permitting models for hazardous weather events and lead to

better utilization of these simulations amongst forecasters.
24



Objective 2 — Ensemble Development

e Microphysics Ensemble will consist of the following schemes

e Some schemes are more complex than others. Meaning,
some schemes predict more variables than others (i.e. mixing
ratio (q) and number concentration (N))

Microphysics ~ Moments Predicted / Features Original Reference
scheme
1) WSM6 Q Hong and Lim (2006)
2) Ferrier Q; snow, graupel, & sleet are combined within  Ferrier et al. (2002)

a single category
3) Goddard Q; six classes following Lin et al. (1983) Tao and Simpson (1993)
4) Morrison g and N, for 5 species; one graupel category Morrison et al. (2009)
5) WDM6 g for ice; g and N, for warm rain processes Lim and Hong (2010)
6) Milbrandt g and N, for all species; separate graupel & hail ~ Milbrandt and Yau (2005)
7) Thompson™ g and N, for ice and rain Thompson et al. (2008)
8) NSSL g and N, for all species Mansell et al. (2010)

9) Linll g with diagnostic riming intensity Lin and Colle (2011)




 WRF model (v3.4.1), Advanced
Research WRF (ARW) dynamical
core.

e 35 vertical levels.

e Initial and boundary conditions are
obtained from 40 km NAM model.

* Nested Domain:
- d01 - 12 km grid length
— d02 - 4 km grid length

26
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Objective 2 — Test Case (5/10/2010)

Sample of the Ensemble members for a test case
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Simulations can capture individual supercells.



Objective 2 — Test Case (5/19/2015)

Simulated Reflectivity
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In this case, all simulations agree better with observations.
Notice that they all are squall line systems, not local convective systems.
More cases are needed to get statistical results (more quantitatively).
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